Quantum State Discrimination via Partial Measurement Offers No Average Gain.

The accurate identification of quantum states represents a fundamental challenge in quantum information science, with implications for secure communication and computation. Recent research explores whether strategically limiting information gained through measurement – a process termed partial post-selection – can enhance the ability to distinguish between quantum states. Qipeng Qian, from the Program in Applied Mathematics at the University of Arizona, and Christos N. Gagatsos, affiliated with both the Department of Electrical and Computer Engineering and the Wyant College of Optical Sciences at the same institution, investigate this question in their work, “The effect of partial post-selection on quantum discrimination”. Their analysis, utilising a framework involving local operations and classical communication (LOCC), demonstrates that, on average, employing partial measurements to manipulate states before attempting discrimination does not yield improved performance compared to directly discriminating the original states. This conclusion holds even when allowing for classical communication between measurement outcomes, suggesting inherent limitations to this state engineering approach.

Recent research investigates the efficacy of utilising pre-measurement strategies, involving partial measurements and subsequent classical communication, to enhance the discrimination of two unknown quantum states. The study demonstrates that, on average, employing these techniques does not improve the probability of correctly distinguishing between the states, maintaining the same minimum error probability as direct discrimination without pre-measurement.

The research establishes a general analytical framework for scenarios where an unknown quantum state interacts with an environment before undergoing a partial measurement on one component of the system. This partial measurement, unlike a complete measurement which definitively determines the state, yields probabilistic outcomes. These probabilities are then communicated classically to an observer, who uses this information to attempt to distinguish between the initial states. The framework utilises Positive Operator-Valued Measures (POVMs), a mathematical formalism describing measurements in quantum mechanics where outcomes are associated with probabilities, to model these partial measurements.

The analysis operates within the constraints of Local Operations and Classical Communication (LOCC), a fundamental principle in quantum information theory. LOCC dictates that information can only be exchanged through classical channels and local operations on quantum systems, precluding instantaneous communication or entanglement-assisted strategies that might otherwise improve discrimination. The researchers rigorously demonstrate that no LOCC strategy can outperform direct discrimination in this specific setup. This means that even with the added flexibility of pre-measurement and classical communication, the fundamental limits on distinguishing between quantum states remain unchanged.

While this research establishes a negative result, indicating the limitations of this particular approach, it also opens avenues for future investigation. The researchers suggest exploring scenarios involving more complex environmental interactions or the inclusion of unitary transformations, which preserve the norm of quantum states, to determine if improvements are possible under different conditions. Potential applications of this work extend to areas such as quantum cryptography, where secure communication relies on the ability to distinguish between quantum states, and quantum sensing, where precise measurements are crucial for detecting weak signals.

👉 More information
🗞 The effect of partial post-selection on quantum discrimination
🧠 DOI: https://doi.org/10.48550/arXiv.2506.14105

Quantum News

Quantum News

As the Official Quantum Dog (or hound) by role is to dig out the latest nuggets of quantum goodness. There is so much happening right now in the field of technology, whether AI or the march of robots. But Quantum occupies a special space. Quite literally a special space. A Hilbert space infact, haha! Here I try to provide some of the news that might be considered breaking news in the Quantum Computing space.

Latest Posts by Quantum News:

IBM Remembers Lou Gerstner, CEO Who Reshaped Company in the 1990s

IBM Remembers Lou Gerstner, CEO Who Reshaped Company in the 1990s

December 29, 2025
Optical Tweezers Scale to 6,100 Qubits with 99.99% Imaging Survival

Optical Tweezers Scale to 6,100 Qubits with 99.99% Imaging Survival

December 28, 2025
Rosatom & Moscow State University Develop 72-Qubit Quantum Computer Prototype

Rosatom & Moscow State University Develop 72-Qubit Quantum Computer Prototype

December 27, 2025