Spin Squeezing via Entanglement Boosts Signal in Electron Microscopy

The fundamental limit of image clarity in electron microscopy, a cornerstone of modern materials science and biology, is currently dictated by unavoidable noise arising from the relatively small number of electrons used to create an image. Shiran Even-Haim, Ethan Nussinson, and colleagues from the Technion – Israel Institute of Technology and the Weizmann Institute of Science demonstrate a pathway to overcome this limitation by applying principles of quantum entanglement, specifically a technique called spin squeezing, to electron microscopy. Their theoretical work reveals that generating entangled electron states through interactions and careful measurement strategies can dramatically improve the signal-to-noise ratio, potentially allowing researchers to visualise structures with unprecedented detail and reduce the damaging effects of the electron beam. This research bridges the gap between atomic physics and electron microscopy, offering a promising route towards quantum-enhanced imaging and a new era of high-resolution structural analysis.

Researchers have theoretically demonstrated that quantum entanglement, specifically spin squeezing, can overcome the noise limitations in electron microscopy. This technique promises more explicit images, particularly for delicate biological samples, by reducing quantum noise below the standard limit and potentially enabling visualisation with unprecedented detail. Current limitations stem from shot noise inherent in electron beams, a fundamental consequence of the discrete nature of electrons.

The team’s work proposes harnessing quantum entanglement to enhance image clarity. Spin squeezing generates correlated electron states, enabling more precise measurements of phase, a critical element in image formation. Calculations indicate that, under conditions relevant to cryo-electron microscopy, spin squeezing could substantially improve the signal-to-noise ratio, potentially approaching the Heisenberg limit of precision.

This improvement would not only yield more explicit images but also reduce the electron dose required for imaging, minimising damage to sensitive biological samples. While generating and controlling entangled electron states presents a significant challenge, this research opens a promising new avenue for advancing electron microscopy and unlocking new insights into the fundamental building blocks of life. The technique offers the potential to visualise biological structures with increased resolution and enhanced clarity, addressing long-standing limitations in the field.

👉 More information
🗞 Spin Squeezing in Electron Microscopy
🧠 DOI: https://doi.org/10.48550/arXiv.2507.09243

Quantum News

Quantum News

As the Official Quantum Dog (or hound) by role is to dig out the latest nuggets of quantum goodness. There is so much happening right now in the field of technology, whether AI or the march of robots. But Quantum occupies a special space. Quite literally a special space. A Hilbert space infact, haha! Here I try to provide some of the news that might be considered breaking news in the Quantum Computing space.

Latest Posts by Quantum News:

From Big Bang to AI, Unified Dynamics Enables Understanding of Complex Systems

From Big Bang to AI, Unified Dynamics Enables Understanding of Complex Systems

December 20, 2025
Xanadu Fault Tolerant Quantum Algorithms For Cancer Therapy

Xanadu Fault Tolerant Quantum Algorithms For Cancer Therapy

December 20, 2025
NIST Research Opens Path for Molecular Quantum Technologies

NIST Research Opens Path for Molecular Quantum Technologies

December 20, 2025