Mobile Quantum Key Distribution Achieves Secure Communication Between Moving Platforms.

A mobile quantum key distribution system was demonstrated across drone-to-drone, drone-to-vehicle, and vehicle-to-vehicle links. The compact, modular devices achieved secure key rates of 1.6 to 20 kbps, validated by physics models accounting for platform-specific device imperfections. Future upgrades will incorporate diverse photonic sources.

The demand for secure communication continues to escalate, prompting investigation into quantum key distribution (QKD) as a potential solution. Unlike classical cryptography, QKD relies on the laws of quantum mechanics to guarantee secure communication, as any attempt to intercept the key will inevitably disturb the quantum states carrying it, alerting the legitimate parties. Researchers are now extending QKD beyond static, fibre-optic networks to encompass mobile platforms. A collaborative team, comprising Andrew Conrad, Roderick Cochran, Daniel Sanchez-Rosales, Samantha Isaac, Timur Javida, Tahereh Rezaei, A.J. Schroeder, Grzegorz Golba, Akash Guthab, Brian Wilensa, Kyle Herndon, Alex Hill, Joseph Chapman, Ian Call, Joseph Szabo, Aodhan Corrigand, Lars Kamind, Norbert Lütkenhaus, Daniel J. Gauthier, and Paul G. Kwiat, detail their work in ‘Drone- and Vehicle-Based Quantum Key Distribution’. They present a compact, adaptable QKD system deployed across various moving platforms – drones and vehicles – achieving secure key rates of 1.6 to 20 kbps, and incorporating refined physical models to account for the challenges inherent in mobile operation.

Mobile Quantum Key Distribution Achieved Between Moving Platforms

Researchers have successfully demonstrated quantum key distribution (QKD) between mobile platforms, establishing secure communication links between drones and vehicles. This development represents a progression towards practical, mobile quantum communication networks. QKD leverages the principles of quantum mechanics to encode and transmit information, guaranteeing security rooted in the fundamental laws of physics and offering a robust alternative to traditional cryptographic methods which rely on computational complexity.

The demonstrated system achieves key rates ranging from 1.6 to 20 kilobits per second. This validates the feasibility of mobile QKD networks and opens doors for secure communication in dynamic environments. The system employs free-space QKD, transmitting photons through the air to establish a secure key. Crucially, maintaining alignment between transmitter and receiver requires precise pointing, acquisition, and tracking (PAT) systems. These systems utilise beacon lasers to actively compensate for the relative motion of the platforms, ensuring a stable optical link despite movement. Advanced physical models account for non-ideal device behaviours, enhancing the accuracy of security assessments in mobile scenarios.

The system prioritises modularity, reduced size, weight, and power consumption, enabling deployment on diverse moving platforms. Successful communication has been demonstrated in drone-to-drone, drone-to-vehicle, and vehicle-to-vehicle configurations. Detailed modelling of channel parameters, including loss and background noise, optimises system performance and enhances key generation rates. Safety concerns have been addressed by ensuring the laser beacons remain eye-safe for surrounding personnel and traffic.

Researchers implemented decoy state methods, a security protocol that mitigates potential eavesdropping attacks by verifying the integrity of the quantum signals. Rigorous testing achieved secure key rates ranging from 1.6 to 20 kilobits per second in the finite-key regime – a security analysis accounting for a limited number of key exchanges. Quantum bit error rate (QBER) is carefully monitored and minimised to maintain the integrity of the quantum channel.

Advanced physical models of the QKD system incorporate non-ideal behaviours inherent in mobile platforms, such as vibrations and atmospheric turbulence. Validation against experimental data collected during flight tests confirms the predictive accuracy of these models.

Potential applications for this technology include secure military communications, critical infrastructure protection, and secure data transmission for financial institutions. Future work will focus on increasing key rates, extending communication distances, and integrating QKD with other security technologies, such as post-quantum cryptography, to create a comprehensive security solution. Collaboration with industry partners will accelerate the development and deployment of mobile QKD systems.

This research represents a significant step towards realising the full potential of quantum communications, paving the way for a future where secure communication is guaranteed by the laws of physics and offering a robust defence against evolving cyber threats.

👉 More information
🗞 Drone- and Vehicle-Based Quantum Key Distribution
🧠 DOI: https://doi.org/10.48550/arXiv.2505.17587

Quantum News

Quantum News

As the Official Quantum Dog (or hound) by role is to dig out the latest nuggets of quantum goodness. There is so much happening right now in the field of technology, whether AI or the march of robots. But Quantum occupies a special space. Quite literally a special space. A Hilbert space infact, haha! Here I try to provide some of the news that might be considered breaking news in the Quantum Computing space.

Latest Posts by Quantum News:

IBM Remembers Lou Gerstner, CEO Who Reshaped Company in the 1990s

IBM Remembers Lou Gerstner, CEO Who Reshaped Company in the 1990s

December 29, 2025
Optical Tweezers Scale to 6,100 Qubits with 99.99% Imaging Survival

Optical Tweezers Scale to 6,100 Qubits with 99.99% Imaging Survival

December 28, 2025
Rosatom & Moscow State University Develop 72-Qubit Quantum Computer Prototype

Rosatom & Moscow State University Develop 72-Qubit Quantum Computer Prototype

December 27, 2025